written by reader Ebola, Vaccination, Flu, Viral Transmission: The Links and the Kinks

Doc Gumshoe's take on Ebola

By Michael Jorrin, "Doc Gumshoe", November 17, 2014

[ed. note: Michael Jorrin, who we like to call “Doc Gumshoe”, is a longtime medical writer who shares his thoughts with us a couple times a month. He is not a doctor, and his articles are not typically focused on investment ideas]

This post will neither spook you nor cheer you up. In adding Doc Gumshoe’s voice to the multitudes who have been speaking and writing (some with passion and eloquence and wisdom, some hysterically and focusing attention on themselves) I hope to avoid redundancy and approach this exceedingly difficult and painful subject with a degree of calm and, yes, my habitual skepticism.

Here are some assertions, which I put forward with considerable confidence.

  • One, there will be nothing even remotely resembling an Ebola epidemic in the US or any other developed country.
  • Two, the course of the epidemic in West Africa is uncertain. But even if the current Ebola epidemic diminishes, the virus is here to stay, resulting in future outbreaks and epidemics.
  • Three, combating Ebola in Africa must rely more on containment than on treatment.

What’s the basis for my confidence in making these assertions?

First, regarding the unlikelihood of an epidemic in developed countries: to date, in the developed world, a total of three patients with Ebola have died – the priest, who died in Spain, a Sudanese health-care worker who died in a German hospital, and the visitor from Liberia, who died in Dallas after the management of his infection was disgracefully botched. In contrast, several aid workers who have returned from Africa to their home countries infected with Ebola have recovered, and both of the nurses who were infected by the African visitor have recovered, as well as the nurse in Spain who was infected by the priest. And as I write this, all the possible Ebola contacts in Texas have been cleared. The American physician, Dr Craig Spencer, who returned from Africa, was diagnosed with Ebola in New York City (after having spent several days unconcernedly going about town) was released from Bellevue Hospital on November 11th. It is certainly likely that as health-care workers return to their home countries, some of them will be infected with Ebola. It is also likely that there may be some transmission of Ebola from those infected individuals. But in developed nations all real or suspected cases of Ebola will be managed with the utmost care (the Dallas lesson having been taken to heart), and treated with supportive therapies plus whatever active treatment options may be available. The disease will not spread.

Second, regarding the future of Ebola beyond the current epidemic in West Africa: it may wane, or it may spread at an accelerating rate. Previous Ebola outbreaks in various regions in Africa have remitted more or less spontaneously, and it is within the limits of possibility that the current West African epidemic might do the same. When I say “spontaneously,” I mean that the previous outbreaks ended due to a combination of circumstances that included individual patient care, public health measures, and also, perhaps, changes in the activity of the virus. By that vague phrase – what does “the activity of the virus” mean? – I am pointing to a number of possibilities that can affect the course of an epidemic. Here are some: the disease initially affects the most susceptible persons, and kills a great number of them; the remaining population, which is either physically or genetically more resistant, survives, and develops Ebola antibodies. Here’s another: the virus itself changes, becoming less virulent and/or less transmissible. Viruses do this; we’ll discuss the “why” later.

However – and this is the real point of my assertion – even if the current Ebola epidemic diminishes, the virus will persist in animal reservoirs, and as long as this is the case, there is likely to be transmission to humans. And considering conditions in Africa, epidemics are likely.

Third, regarding combating Ebola in Africa through containment: providing humane treatment to persons infected with Ebola is an ethical absolute, but it won’t do much to prevent the spread of the epidemic. In fact, unless treatment is conducted according to standards that are attained only at the most advanced medical facilities, the possibility exists that efforts at treatment may even contribute to the spread of the disease. I will say more about containment, but consider the following scenario:

A possible, but dreadful, sequence of events

As we very well know, Ebola is a terrifying disease, and people all over the world are, by now, frightened of it. In parts of West Africa, we have learned that people initially mistrusted health-care workers, and were reluctant to seek medical care in hospitals, because they thought that most people who went to hospitals didn‘t come out alive. That may have changed; people are indeed seeking medical care when they suspect they might have Ebola.

But what happens then? At the moment, in Africa, tests for the Ebola virus must be conducted in laboratories (of which there are only a few) and this requires transporting blood samples for long distances. In rural areas, this can take a full day or longer. The blood tests currently being used take several hours, and the labs are swamped, so getting results can take several days.

In the meantime, the person with suspected Ebola is kept in facilities with other persons who also may have Ebola. For a person who did not have Ebola at the time of presentation to the medical facility, the risk of being infected with Ebola during this period (while waiting for test results) is considerable.

So, the test results come back, and person A is found to be Ebola-free. However, the blood sample was taken several days ago, and in the meantime person A has become infected by contact with person B, who does indeed have Ebola.

Person A is then discharged from the hospital, or, if he or she continues to have suspicious symptoms, moved to another ward for observation or treatment of whatever non-Ebola disease may be the culprit. But by now person A does have Ebola, and may transmit Ebola to other people in this non-Ebola ward, including to health-care workers.

A similar scenario would unfold in the case of a false negative result, or if at the time person A’s blood was drawn his/her viral load was not enough to generate a correct result.

A major need in the effort to control Ebola is, therefore, a rapid and accurate test that can be conducted quickly and relatively inexpensively and, perhaps most important, does not require transportation of blood samples over long distances to a laboratory, but can b