Does Phage Therapy for Infectious Diseases Have Potential as Antibiotics Fail?

By Michael Jorrin, "Doc Gumshoe", March 22, 2021

I am not predicting total doom when I say that the current treatment of infectious diseases is under serious threat due to the increasing prevalence of multi-drug-resistant (MDR) pathogens. But germs that have developed ways to escape antibiotic treatment are unquestionably a growing threat. Both the Centers for Disease Control (CDC) and the World Health Organization (WHO) have declared those bugs to be major threats to health. The CDC estimates that in the US, antibiotic-resistant pathogens result in about two million illnesses and at least 23,000 deaths per year. In the US at present, methicillin-resistant Staphylococcus aureus (MRSA) infections kill more people than HIV/AIDS and tuberculosis combined. The UK’s 2016 Review on Antibiotic Resistance estimated that the global impact of these pathogens amounted to about 700,000 deaths and a financial impact in the trillions of dollars. And on September 21, 2016 the United Nations General Assembly convened to discuss the problem of antibiotic resistance and stated that antibiotic resistance was “the greatest and most urgent global risk.”

So, in that context, the possibility that bacteriophages can be used to treat infectious diseases has been attracting a good deal of attention lately.

I will admit that although I knew a tiny bit about bacteriophages – i.e., that they constitute an abundant class of viruses that essentially eat bacteria – it was a long and excellent piece in The New Yorker (“A Healing Virus,” Dec 21, 2020) that alerted me to the possibility that phages could be a highly important contribution to infectious disease treatment. And that I should do some digging around and devote a Doc Gumshoe installment to the subject.

The New Yorker piece about bacteriophages included several quite detailed case histories as well as background on the historical development of phage treatment and a simplified explanation of the mechanism through which phages destroy bacteria. By “simplified” I do not mean “dumbed down.” It was couched in terms that would be understood by the average New Yorker reader – i. e., intelligent but not proficient in medical lingo. I will assume that the average Doc Gumshoe reader is more intelligent and attempt to describe, in somewhat more detail, how bacteriophages invade germs, use them for nourishment and reproduction, and then kill the bacteria.

One of the case histories describes the case of Tom Patterson, who is married to Steffanie Strathdee, an infectious disease epidemiologist at the University of California San Diego School of Medicine. I will recapitulate Tom Patterson’s experience with phage therapy. However, a particularly interesting and currently relevant aspect of his experience is that it was, at least in part, what triggered the establishment of the first phage therapy center in North America, the Center for Innovative Phage Applications and Therapeutics (IPATH) at U. C. San Diego, about which more later.

Early history of bacteriophage therapy

Considering that phage therapy today is not widely used or even widely discussed, it is interesting that the possibility that there was a mysterious something that attacked germs was first investigated in the last years of the 19th century. A British bacteriologist, Ernest Hankin, reported in 1896 that there was an unidentified substance in the waters of the Ganges and Jumna rivers in India that was eliminating from their waters the bacterium Vibrio cholera that is responsible for cholera epidemics, thus limiting the spread of the epidemic. A couple of years later, the Russian bacteriologist Nikolay Gamaleya noticed much the same phenomenon with the non-pathogenic Bacillus subtilis. (Note: Nikolay Gamaleya founded the institute that this year discovered the Sputnik V vaccine.) These investigators reported their findings, but did not explore further. Then, more than twenty years later, the English bacteriologist Frederick Twort suggested that the phenomenon, which he had also observed, was likely due to a virus. Again, Twort went no further and did not publish his findings.

It was not until about 1915 that the French-Canadian microbiologist Felix d’Herelle conducted specific experiments to identify and attempt to characterize whatever it was that was invisibly reducing those bacterial populations. D’Herelle was studying an outbreak of severe hemorrhagic dysentery among French troops stati